january 2001 www.embedded.com volume 14, number 1

Emheddedsystems

Give the Dog
a Chip

Processor-based
Toys

Embedded Linux:
A Porting Guide

Testing Interactive Programs

Saks on References

Internet Appliance
Design:

Real-Time Networking
1-Wire Protocol

LEWIN A.R,.W.

EDWARDS

Toy Story

Increasingly, children's toys are embedded systems.
The engineering behind them demands a closer look.

alk through any toy store (preferably
unaccompanied by your children)
and you'll see a huge range of talking
and musical toy products; a cat that
purrs when you pet it, a doll that says
“I love you, Mommy” when you hug it,
and so on. Engineering these toys is a special science, sur-
prisingly complex for such simple products, and it makes an
interesting contrast from designing more expensive sys-
tems. In this article, I will describe the engineering behind
a simple speaking doll to highlight the particular problems
and requirements of the toy industry.

For brevity's sake, I will skip the “idea design” phase of
a toy project, and start where the engineering begins, with
the project specification already in hand. This is typically
in the form of a play-pattern flow chart detailing the
behavior of the toy. Our fictitious doll’s play pattern is
detailed as follows;

¢ The toy will be a baby doll with a normally open switch
in the abdomen (to detect hugging) and a gravity switch
(to detect if the doll is standing or lying down)

26 JanUARY 2001 Embedded Systems Programming

The gravity switch will be open while the doll is upright

® If the abdomen switch is pressed while the doll is in the
upright position, the doll will play one of the following
sounds: giggle, long laugh, or a happy-sounding non-
sense sound. It will cycle through these sounds, playing
each in turn as the abdomen switch is pressed repeatedly

® If the abdomen switch is pressed while the doll is lying
down, the doll will cry and then fall silent

® When the doll is shifted from the lying to the standing
position, it will yawn

® When the doll is shifted from the standing to the lying

position, it will snore briefly and then fall silent

Sounds

The first real engineerin g step is to record the sounds and
transport them to the chip development system. Although
we'll be downsampling a lot later, starting with high-quality
samples is a must. The recording sessions are undertaken in
an acoustically “dead” studio environment using 44kHz 16-
bit sampling, recorded directly to hard disk, It is usual to
hire professional voice talent for this, rather than having
the project engineer or office staff record the sound. TIt’s

best to do several takes of each word
or phrase, so that you have a range of
sounds to choose from without having
to call the voice talent back in.

For projects that involve music
from electronic instruments, it is
preferable to record the artist’s efforts
in MIDI format rather than an audio
stream; MIDI allows you to change
instruments and
remove polyphonic elements as neces-
sary when fine-tuning the perfor-
mance for the target hardware.

timing, and to

Sometimes, the audio engineer
must “factor” sampled sounds to
reduce ROM space usage by merging
redundant sounds. The standard
example of this is in a counting toy
that must count from one to twenty.
Instead of having one separate sample
for each number, the toy will contain
samples for the numbers from one to
12, and the number 20, then the frag-
ments “thir-* (for 13), “Rf-* (for 15),
and “eigh-* (for 18), in addition to the
suffix “-teen”. Note that we can use the
“four,” “six,” “seven,” and “nine”
sounds both as standalone numbers
and as prefix sounds for their “teen”
VErsions.

The degree to which we need to
factor depends on how much space is
available. For example, we could try to
factor 31 into “thir-* (we can use that
for 13 and 30), “ty” (we can use that
for all the “4y" words), and “one.”
Factoring is exhausting work that
involves cutting and pasting fragments
of syllables, enhancing plosives, test-
ing various combinations of concate-
nated sounds to make sure they sound
like coherent words, and so on. It can
take a couple of weeks of full-time
effort to get a realistic-sounding result
for just a few words, so try to avoid fac-
toring further than necessary.

The extreme case of factoring is to
create an allophonic speech synthesiz-

T Every penny counts in toy production, so an idea that requires too

much expensive horsepower will never make it past the toy
companies that buy ideas from inventors.

er chip like the old Votrax SC01 or
General Instruments SPO256A-A1.2.
These chips contain—actually, synthe-
size—a library of speech fragments
from which you can assemble words.
For example, you could make “dog”
from the fragments “d,” “ah,” and “g”;
however, it’s very hard to make this
type of speech sound realistic. The
project we are discussing here is much
too simple to merit this kind of effort.

Microcontroller selection

We now need to choose a microcon-
troller for this creature. Every penny
counts in toy production, so an idea
that requires too much expensive
horsepower will never make it past the
toy companies that buy ideas from
inventors, As a result, almost all speak-
ing toys are based around 4-bit speech
micros such as the enormously popu-
lar PowerSpeech line from Winbond.
These consist of a simple processor
core with a few input and output pins,
a couple of registers, and an enor-
mous, serially accessed ROM contain-
ing a short program and a large chunk
of sampled sound.

Encoding technology in speech
micros has come a long way. Early
chips used a simple 4-bit PCM encod-
ing to squeeze the longest possible
recording time out of the shortest pos-
sible ROM space. Especially at low
sample rates, this sounds terrible
because of quantization errors.
Modern chips use 4-bit or 5-bit adap-
tive differential pulse code modula-
tion (ADPCM) encoding. This is a pre-
dictive encoding system that exploits
the fact that consecutive samples in a
digitized representation of an analog
signal will be correlated. Each sample
word fetched is arithmetically com-
bined with the current output state of
the decoder to generate the next out-
put state. Using ADPCM, a 5-bit input

stream can be used to drive an 8-bit
DAG, with very good results. Although
the compression system doesn’t gener-
ate a byte-for-byte representation of
the original signal, it is more than ade-
quate for intelligible speech and
music, and for embedded control fre-
quencies used to trigger external
hardware (for example, lip-synchro-
nized toys), and it gives a 37.5% ROM
space savings over raw 8-bit PCM.

The external circuit employed for
most toy applications is very simple: a
battery, an external resistor to config-
ure the chip’s timebase, a small speak-
er, and possibly a transistor to drive
the speaker. To give you an idea of just
how cheap these chips are, a masked,
unpackaged die with enough ROM
space for two minutes of full-quality
audio is around $1.20 in production
quantities. Most toys use much smaller
chips, around the $0.15 to $0.30 price
point. For our application, we will
choose the W583810, which is the sim-
plest of the PowerSpeech line. At the
nominal 6.4kHz sample rate recom-
mended by Winbond, this chip can
store just 10 seconds of audio data; it.
has four input pins and five output
pins. It even has the capability (with
the addition of an external IR LED
and receiver module) to encode and
decode infrared serial transmissions.
We won't be using that functionality;
our simple circuit is shown in Figure 1.
Note that the value of R, is dependent
on the final sample frequency used.
Normally the designer would employ a
resistor substitution box to experi-
ment with different values for this
part.

As you might guess, the instruction
set of these chips is not very rich. They
typically have instructions to load a
register with a constant, increment/
decrement a register, set the state of
the output pins, jump unconditional,

Embedded Systems Programming anuary 2001 27

Kioys Riog

chematic of a doll circuit

Jump unconditional through a regis-
ter, and make various conditional
Jjumps based on input pin state. These
chips typically have no RAM at all
except for a few registers. There is no
stack and the only way to implement a
subroutine is to store a return address
in a register. If you're programming
these devices, ignore everything your
computer science professor taught
you; the only way to write a program is
to use a forest of GOTOs and, for any
non-trivial project, usually a lot of
almost-redundant code.

Power consumption

Although battery-buying parents
might not believe it, power consump-
tion is another key design priority. The
majority of speaking toys are shipped
from the factory with batteries pre-
installed, and the batteries are expect-
ed to last for their normal shelf life
while inside the toy. Many toys lack
power switches, and a large propor-
tion of those toys have a “try-me”
mode so that people browsing in the
store can press a button and see or
hear what the toy can do. For this rea-
son, it is vital that we turn off all por-
tions of the chip we don't plan to use,
and we must make sure to power down
the chip as completely as possible
when it finishes any play sequence.

One very important power issue
stems from the use of ADPCM encod-
ing. If we simply stop the micro after
playing a sound, the output DAC will
assume that we plan to play more sam-
ple data later, so it will retain the last
output state reached after the last sam-
ple word. This will almost certainly
equate to a non-zero output voltage
(probably close to half of the maxi-
mum voltage), which is pure waste cur-
rent going into the loudspeaker. We
could turn off the DAC after each sam-
ple, but that would cause a nasty click.
For this reason, the chip manufacturer
provides assembler macros (actually,
short audio samples) to ramp the DAC
output from 0OV up to the halfway
point and back again. We ramp down
when we finish playing a sample, to
conserve power, and we ramp up again
Jjust before playing a new sample.

To help us achieve the goal of
extended battery life, the program is
largely interrupt-driven. At power-up,
and for each event on an input pin for
which interrupts have been enabled,
the micro begins execution at a known
point. When a STOP instruction is
encountered, the micro powers down
almost completely (maximum current
drain 1pA for the W583510). The bat-
teries will last for close to their shelf
life in this configuration.

28 january 2001 Embedded Systems Programming

Code

Listing 1 shows some example assem-
bly pseudocode for our doll. This code
won’t actually assemble for any known
speech chip, but in syntax it is almost
identical to the Winbond
PowerSpeech series language; I have
simply chosen some easy-to-under-
stand symbol names rather than using
Winbond-specific equate names. Also
note that input pins are referred to as
“triggers” and output pins, though we
aren't using any here, are referred to
as “stops.”

Of course, a real toy’s behavior
would probably be more complicated
than what we described here. For
example, we would most likely insert a
half-second pause before the yawn and
snore sounds, to make the timing
“feel” more realistic. Depending on
the application, we might also want to
disable interrupts while playing back
the sounds, so that the toy would fin-
ish playing the sound before recogniz-
ing further inputs. Cosmetic issues of
that sort are best resolved by building
and testing the code, and require a
good deal of experience and personal
judgement. In addition, we might
want a “try-me” mode where the doll
will respond only to presses on the
abdomen switch (this will avoid bat-
tery wastage during shipping). This
would normally be accomplished by
having a plastic pull-tab holding a pair
of contacts apart, keeping the gravity
switch out of circuit, until the pur-
chaser removes the tab.

Sounds, revisited

Once the code’s behavior is satisfacto-
ry, we can tweak and optimize the
sound files. This tweaking process
involves low-pass and/or high-pass fil-
tering to eliminate undesirable reso-
nances and improve intelligibility. A
careful engineer will also boost quiet
plosives or fricatives so that they may
be more easily distinguished (this is a
necessary step for spelling-type games
and many other educational prod-
ucts). For toys that have lip move-
ments synchronized with their speech,

a mouth control signal is embedded in
the audio file at this time. All the edit-
ing and filtering work is done with the
sound bites in 16-bit 44.1kHz WAV
files; these are then downsampled to
the desired sample rate for the final
chip (typically in the 6kHz to 8kHz
range), and the chip vendor toolchain
imports and converts these files to the
micro’s internal ADPCM format. The
exact sample rate will be chosen to
maximize utilization of available ROM
space; once we have set our ROM bud-
get by selecting a microcontroller, we
choose the highest possible sample
rate that will still allow the compiler to
fit all of our sounds into the device,
Speaking of the compiler, you
shouldn’t expect a high-quality devel-
opment system for these 10-cent chips.
The best they get is mediocre, and
most of the vendorsupplied software
is downright awful; peculiar bugs and
unexplained behaviors abound. Even

trivial programs can be held up by the
compiler refusing to process a particu-
lar sound file unless its length is slight-
ly increased or decreased, strange
errors being reported due to too
much or too little whitespace in the
code, and other frustrating problems.

Testing in this stage is preferably
carried out using a prototype sample
of the toy’s real housing. Where possi-
ble, we should try to specify the exact
type of loudspeaker to be used as well,
because it has a very significant effect
on the final sound quality. The cheap
1;)y speech chips are capable of excel-
lent fidelity when driving good speak-
ers in a well-designed enclosure; toy
designs rarely approach the optimal,
but the size, type, and/or positioning
of a loudspeaker can be the difference
between a product that sells and a
product that stays on the shelves
because nobody can understand what
it's saying.

PCM-9550F Features 8" x 5.75"
= |ntef low power Pentium® MMX ™ processor
= Supports Video-in and TV-out (PCM-9550FM)
= § digital inputs and 8 cigital outputs

== Supports XGA & 36-bit LCD

= 3D audio & 100 Mops Ethernet

= (ng PC/104+ & one mini PCI socket (Type Il

J EBX Form Factor
@ No Cooling Fan
JDigital /O
< Long-term Supply

= (€ FC

Embedded Computing

Advantech Technologies, Inc.
Tel: 949-789-7178 Fax: 049-789-7179
E-mall: EPCinfofadvantech.com

1-800-866-6008

www.advantech.com/epc

30 anuary 2001 Embedded Systems Programming

Up to this point, we have been
working with the micro “in vitro,” on
the chip vendor’s development board,
using flash memory to store our pro-
gram under development. The final
product is practically always a mask-
ROM COB (chip-on-board) part,
where the chip die is bonded directly
to the PCB, leads are soldered from it
to PCB traces, and the chip is protect-
ed with a dollop of resin. Since our
code is now complete, with the
approval of the toy company we send
the final object code out for masking
and bonding.

By the way, it’s easy for me to say
“with the approval of the toy compa-
ny,” but in practice, political issues fre-
quently arise at this point. When exec-
utives of a toy company finally see a
supposedly complete version of the
product, with an emulator board
inside a real toy body, they often have
complaints. Laughing toys sound too
“satanic” (yes, really—lawsuits have
been filed about this), witty toys are
“too risqué,” toys are too scary because
of sudden loud sounds or pronounced
movements, motors or gears are too
noisy, the toy company thinks the
voice should sound more friendly, and
countless similar frustrations appear.
This phase can be particularly annoy-
ing when the toy contains a licensed
voice (such as a children’s movie char-
acter); the owner of the character’s
rights will veto anything that doesn’t
sound sufficiently like the original, or
which doesn't fit in with the charac-
ter's public image.

With these issues resolved, the
engineer’s involvement usually con-
cludes with fine-tuning of production
ROMed, COBed samples. For exam-
ple, the analog characteristics of the
masked microcontroller parts are
slightly different from the flash-based
development system, so the value of
the timing resistor is chosen based on
final testing of a few production sam-
ples. Occasionally, this testing phase
uncovers other problems such as
code bugs that need to be worked
around, if possible, by patching the

circuit in some way. Once the “really
final”
approved, our work is done and we

production samples are
can sit back and dream of large royal-
ty checks.

Design options

Of course, not all toy designs use these
speech microcontrollers. Three major
categories of microcontrollers are used
in toys: the speech micros described pre-

e %

LAUGH:

Pseudo-code for a simple toy

7 —== Tummy behavior #1

¢ === Tumy behavior #2

; ——— Power—on reset entry point
——— Enable interrupts on falling edge of triggers 1 (tummy switch)
7 === and 2 (gravity switch), and rising edge of trigger 2.
INT_ENABLE, TG1_LO OR TGZ_LO OR TG2_HI

e Hicmjuq:shemumtﬁmar1cbtectsafalumarba(wsﬁtd1 is pressed).
=== Note: Switch debouncing is performed in hardware by the microcontroller.
=== The input pins also have internal pull-ups, so no external parts are

POR: LD
LD RO, GIGGLE ;
STOP ;

; === required.

T61_L0: [rampind 2
JMP RO, TG2 HI ;

;

Leryl ¥
Crampout] >
STOP

GIGGLE: [gigglel -
LD RO, LAUGH ;
Crampout] 3
STOP

Claughl s
LD RO, NONSENSE ;
Crampout] s
STOP

; === Tummy behavior #3

NONSENSE: L[nonsensel 2
LD RO, GIGGLE ;
Crampout] :
STOP

; === Micro jups here when trigger 2 detects a falling edge (doll is laid down).

T62_L0: Crampinl i
Csnorel 3
Crampout] 3
STOP

7 === Micro jumps here when trigger 1 detects a rising edge (doll is stood up).

T61_HI: Crampinl 7 Ramp the decoder output to its center point
Lyawn] 7 Good morning! Yawn.
Crampout] ; Ramp the decoder output back to OV
STOP

Next time around, we will Llaugh

Register 0 is used to store the next sound
to be played when the tummy switch is pressed.
Power down and wait for interrupt.

This is a vendor-supplied macro that ramps
the ADPCM decoder output up to its center
point

If the doll is upright (TG2 = high), play
one ofthe three tummy behavior sounds below.
Otherwise, cry

Ramp the decoder output back to OV

Play the giggle sound

Ramp the decoder output back to OV

Play the laughing sound
Next time around, we will talk nonsense
Ramp the decoder output back to OV

Play a happy-sounding baby-talk phrase
Loop back around to the first sound in the series
Ramp the decoder output back to OV

Ramp the decoder output to its center point
Snore for a Little while
Ramp the decoder output back to OV

32 Janusry 2001 Embedded Systems Programming

viously, single or multivoice “squeaker”
tune-playing chips of the type found in
musical greeting cards, and chips with
various LCD controllers in them (the
latter are used mainly in handheld
games). Various manufacturers also
make hybrid parts that are essentially
one of their 4-bit speech microcon-
trollers squeezed onto the same piece of
silicon as a second, more powerful
microcontroller that controls a dot-
matrix LCD and tells the speech micro
when to make sounds. Apparently, the
primary application of these latter chips
is the toy “computers” made by VTech,
which you will see on the shelves of
almost any toy store. (A few maverick
items on the market, like the Sony Aibo
robot dog, use more powerful micros,
but these devices are priced an order of
magnitude or two above the normal toy
category, so they don’t count.) As an
mteresting aside, Furby is also a com-
plex maverick: he contains several sepa-
rate electronic subassemblies, and a
large number of discrete components.

Working in toy design is at least as
much fun as playing with toys, and
there’s a special pleasure to be derived
from walking through a store and
hearing children cajoling their par-
ents into buying a product that con-
tains your code. Unfortunately, most
toy design work has left the U.S., so
there aren’t many positions available
now. But if you enjoy fun projects that
make the most of very constrained sys-
tems then you can’t get a better assign-
ment than toy design. You might be
surprised at the amount of engineer-
ing effort behind that $10 gurgling
baby doll, but I bet you'll never look at
one the same way again, esp
Lewin A.R.W. Edwards is an Australian-
born embedded engineer now working for
Digi-Frame in Port Chester, NY. He has
developed hardware, firmware, and device
drivers around a variely of different proces-
sors. He's worked in the fields of digital
imaging, encryption and security, and—
no surpmise—in the electronic toy industry.
He can be contacted by e-mail at
larwe@larwe.com.

